Differential geometry of higher order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Differential Geometry with Higher Order Derivatives

We build a toy model of differential geometry on the real line, which includes derivatives of the second order. Such construction is possible only within the framework of noncommutative geometry. We introduce the metric and briefly discuss two simple physical models of scalar field theory and gauge theory in this geometry. TPJU 2/94 January 1994 Partially supported by KBN grant 2 P302 168 4 E-m...

متن کامل

Recurrent metrics in the geometry of second order differential equations

Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...

متن کامل

Higher-Order Preconnections in Synthetic Differential Geometry of Jet Bundles

In our previous papers (Nishimura [2001 and 2003]) we dealt with jet bundles from a synthetic perch by regarding a 1-jet as something like a pinpointed (nonlinear) connection (called a preconnection) and then looking on higherorder jets as repeated 1-jets. In this paper we generalize our notion of preconnection to higher orders, which enables us to develop a non-repetitive but still synthetic a...

متن کامل

recurrent metrics in the geometry of second order differential equations

given a pair (semispray $s$, metric $g$) on a tangent bundle, the family of nonlinear connections $n$ such that $g$ is recurrent with respect to $(s, n)$ with a fixed recurrent factor is determined by using the obata tensors. in particular, we obtain a characterization for a pair $(n, g)$ to be recurrent as well as for the triple $(s, stackrel{c}{n}, g)$ where $stackrel{c}{n}$ is the canonical ...

متن کامل

Semipositone higher-order differential equations

Krasnoselskii’s fixed-point theorem in a cone is used to discuss the existence of positive solutions to semipositone conjugate and (n, p) problems. @ 2004 Elsevier Ltd. All rights reserved. Keywords-Existence, Positive solution, Semipositone, Conjugate and (n,p) problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1962

ISSN: 0040-9383

DOI: 10.1016/0040-9383(62)90103-9